If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-30x-351=0
a = 1; b = -30; c = -351;
Δ = b2-4ac
Δ = -302-4·1·(-351)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-48}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+48}{2*1}=\frac{78}{2} =39 $
| 3n^2+5n=164 | | 7m+9.5=13 | | 7x-11+3x=4x+13+3 | | 2y-1.875y=8 | | 158-5x=20+x | | -3.8c=15.96 | | 7y2-22y+16=0 | | 2(5-n=8 | | 9u-3=15 | | 12x-1=5x+20 | | (5x/6)-(7/4)+(2x/3)=(3x)-(5/12)+(x/3) | | (-4)(5+2x)=(-100) | | −x−1(−1.2x−6.9)=10+2(0.3x-10)10+2(0.3x−10) | | (5x/6)-(7/4)+(2x/3)=(3x-5/12+x/3 | | 5x9/6-7/4+2x/3=3x-5/12+x/3 | | (n-1)*5=30 | | (p2-3)-2,p=1 | | (x)(x+3x)=160 | | 15000=(x/100)*4.3 | | -1=-2(u-8) | | (10d)-4d-(15d)=-7 | | F(n)=2(2)-1 | | 14r=-2r-18r=12 | | 8=2(f-14) | | -13q=7q=-8=16 | | f+78/2=-3 | | -3+x-5=-8 | | -4(j+71)=-36 | | 7(q-92)-11=38 | | 69v-(50v)-30v-71v=-18 | | 81c-36c=90 | | -99p+56p+28p=60 |